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ABSTRACT 

Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne patho-
gens: Looking back over 30 years. Phytopathology 97:250-256. 

Pseudomonas spp. are ubiquitous bacteria in agricultural soils and have 
many traits that make them well suited as biocontrol agents of soilborne 
pathogens. Tremendous progress has been made in characterizing the 
process of root colonization by pseudomonads, the biotic and abiotic 

factors affecting colonization, bacterial traits and genes contributing to 
rhizosphere competence, and the mechanisms of pathogen suppression. 
This review looks back over the last 30 years of Pseudomonas biocontrol 
research and highlights key studies, strains, and findings that have had 
significant impact on shaping our current understanding of biological 
control by bacteria and the direction of future research. 

 
Pseudomonas spp. are aerobic, gram-negative bacteria, ubiqui-

tous in agricultural soils, and are well adapted to growing in the 
rhizosphere. Pseudomonads possess many traits that make them 
well suited as biocontrol and growth-promoting agents (135). 
These include the ability to (i) grow rapidly in vitro and to be 
mass produced; (ii) rapidly utilize seed and root exudates; (iii) 
colonize and multiply in the rhizosphere and spermosphere 
environments and in the interior of the plant; (iv) produce a wide 
spectrum of bioactive metabolites (i.e., antibiotics, siderophores, 
volatiles, and growth-promoting substances); (v) compete aggres-
sively with other microorganisms; and (vi) adapt to environmental 
stresses. In addition, pseudomonads are responsible for the natural 
suppressiveness of some soils to soilborne pathogens (137). The 
major weakness of pseudomonads as biocontrol agents is their 
inability to produce resting spores (as do many Bacillus spp.), 
which complicates formulation of the bacteria for commercial 
use. The purpose of this review is to look back over the last  
30 years of Pseudomonas biocontrol research and identify some 
key studies and findings that have helped to shape our current 
understanding of the biocontrol activity of these bacteria and the 
direction of future research. 

CLASSIC STRAINS AND NOVEL CONCEPTS 

Berkeley strains. One lineage of contemporary Pseudomonas 
biocontrol research can be traced to bacterization studies with 
fluorescent pseudomonads beginning in the 1970s at the Univer-
sity of California, Berkeley. Bacterization is the process of 
inoculating plant seeds, seed pieces, or roots with bacteria to 
enhance plant growth (54). These studies demonstrated that cer-

tain fluorescent Pseudomonas spp. improved the growth of potato 
sugar beet and radish when applied to seeds or seed pieces 
(108,109). Examples of strains that have provided enhanced 
growth include TL-3 (13), B10, A1, and E6 (58), isolated from 
potato tubers and roots, and SH-5, isolated from sugar beet roots 
(116). All of these strains were classified as P. fluorescens-putida 
types. For example, in 11 trials conducted at multiple field sites 
over 3 years, bacterization of potato seed pieces with TL-3 
resulted in an average yield increase of 10% compared with the 
noninoculated control. These results were statistically significant 
at 6 of 11 sites (13,58). In five of nine field trials, SH-5 sig-
nificantly increased the yield of sugar beet an average of 12%. 
Growth promotion following bacterization also was demonstrated 
for radish (56) and ornamental plants (145). Growth promotion in 
these studies apparently resulted from suppression of “minor 
pathogens.” These studies, and many others, resulted in the fol-
lowing new terms, findings, and concepts. 

 Rhizobacteria: plant-associated bacteria that are able to 
colonize and persist on roots (54). 

 Plant growth-promoting rhizobacteria (PGPR): rhizobacteria 
that have the ability to promote the growth of plants follow-
ing inoculation onto seeds or subterranean plant parts (54). 
Initial studies of PGPR focused primarily on fluorescent 
pseudomonads, but it is now known that PGPR include a 
diverse assemblage of bacteria representing a broad spec-
trum of genera. 

 PGPR strains are aggressive colonists of the rhizosphere en-
vironment and they can persist for the duration of the grow-
ing season (5,58). 

 PGPR can preempt the establishment of other rhizosphere 
microorganisms through competition for favored sites on the 
root and in the rhizosphere (57,116). 

 Production of siderophores (e.g., pyoverdine and pseudo-
bactin) by PGPR, which can limit the amount of iron avail-
able to pathogens for growth, was identified as a new 
mechanism of biological control (53). Strain B10 was used 
as a model organism in studies of siderophore production 
and the role of siderophores in biological control (58). 
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 Pseudomonads improve plant growth by suppressing either 
“major” (produce well-known root or vascular diseases with 
obvious symptoms) or “minor” (parasites or saprophytes 
that damage mainly juvenile tissue such as root hairs and 
tips and cortical cells) pathogens (103). 

Dutch strains. A second lineage of contemporary Pseudo-
monas biocontrol research can be traced to bacterizaton studies 
with fluorescent pseudomonads initiated at the Phytopathologisch 
Laboratorium, “Willie Commelin Scholten” (WCS), Baarn, The 
Netherlands. Dutch researchers observed that as the frequency of 
potato production in a field increased, the yields decreased. Po-
tatoes grown every third year (short potato rotation) or continu-
ously in a field yielded 10 to 15% and 30% less, respectively, than 
potatoes grown in a field every sixth year (long potato rotation) 
(41,103,104). They showed that bacterization of seed tubers with 
pseudomonads such as P. fluorescens strains WCS374 and 
WCS365 and P. putida strain WCS358 resulted in an increase in 
yield in short- but not long-rotation soils (7,33–35). Deleterious 
rhizosphere microorganisms (DRMO), particularly hydrogen 
cyanide (HCN)-producing pseudomonads, were thought to be the 
targets of the PGPR. DRMO increased to population densities 
sufficient to cause damage in the short but not the long rotations, 
thus accounting for the influence of crop rotation on PGPR 
activity (103). Other major pathogens probably also contributed 
to the poor growth of potatoes in short rotations. Siderophore 
production and induced resistance were identified as the primary 
mechanisms of pathogen suppression by the Dutch pseudomonads 
(7,8,97). WCS strains (i.e., WCS374, WCS365, WCS417, and 
WCS358) are especially notable because they have been used ex-
tensively during the past 25 years as model organisms in studies 
of siderophore production and uptake, bacterial traits and genes 
involved in root colonization, and induced systemic resistance 
(ISR) (25–27,81,124,125). 

Antibiotic producers. A third lineage of contemporary Pseudo-
monas biocontrol research can be traced to bacterization studies 
conducted at several laboratories with fluorescent pseudomonads 
that produce antibiotics such as phenazine-1-carboxylic acid 
(PCA) and other derivatives, 2,4-diacetylphloroglucinol (DAPG), 
pyrrolnitrin (Prn), and/or pyoluteorin (Plt). Biocontrol agents 
produce a wide variety of antibiotics; however, the lack of 
definitive experimental evidence for the role of antibiotics in the 
biocontrol process led to an ongoing debate over most of the last 
century (30,141). However, this changed, beginning in 1988, with 
definitive studies showing an important role for antibiotics in 
biocontrol mediated by pseudomonads (119). 

P. fluorescens strain 2-79 and P. chlororaphis 30-84 (formerly 
P. aureofaciens) were isolated from wheat grown in take-all sup-
pressive soils from fields near Lind, Washington (136) and Glen 
Elder, Kansas (96), respectively. Bacterization of spring or winter 
wheat seeds with either of these two strains resulted in significant 
suppression of take-all in about 60% of field trails. For example, 
strain 2-79 increased yields an average of 17% in experimental 
plots and 11% in commercial scale tests (135). Both strains pro-
duce PCA and a pyoverdine siderophore (144). In addition, 2-79 
produces anthranilic acid; and 30-84 produces two other phena-
zines, 2-hydroxyphenazine-1-carboxylic acid (2-OH-PCA) and 2-
hydroxyphenazine (2-OH-PZ) as well as HCN (96). 

P. fluorescens strains CHA0, Pf-5, Q2-87, and F113 have been 
used as model strains in studies of the biosynthesis of DAPG, Prn, 
and Plt, and in studies of the role of these antibiotics in pathogen 
suppression. P. fluorescens strain CHA0 was isolated from roots 
of tobacco grown near Payern, Switzerland, in a soil naturally 
suppressive to black root rot of tobacco caused by Thielaviopsis 
basicola (115). CHA0 produces DAPG, Plt, Prn, HCN, indole-
acetic acid, salicylic acid, pyochelin, a pyoverdine siderophore 
(pseudobactin), and other bioactive metabolites (129). Thus, this 
strain has one of the broadest repertoire of potential biocontrol 
and growth-promoting mechanisms of any PGPR described so far. 

CHA0 suppresses root rots of tobacco and tomato, Pythium 
damping-off of cucumber, and take-all of wheat (28,52,106). The 
contribution of each metabolite to disease suppression is depend-
ent upon the host crop and target pathogen. For example, produc-
tion of DAPG was the primary mechanism of suppression of take-
all of wheat by CHA0, whereas both DAPG and HCN contributed 
to suppression of black root rot of tobacco (37,52,130). Plt was 
involved in suppression of damping-off of cress and cucumber by 
this bacterium (77). Here it is interesting to note that HCN 
production by pseudomonads provides a beneficial effect in terms 
of biocontrol activity. Thus, HCN is an example of a metabolite 
that can differentially affect plant growth depending on the pro-
ducer strain, the amount of HCN accumulating in microsites in 
the rhizosphere, and the crop species grown. 

P. fluorescens Pf-5 was isolated from the rhizosphere of cotton 
and is quite similar to CHA0 in that it produces DAPG, Plt, and 
Prn (46,47,86). Strain Pf-5 suppressed damping-off of cotton 
caused by Pythium ultimum or Rhizoctonia solani. Purified Prn 
and Plt obtained from Pf-5 provided the same protection against 
Rhizoctonia and Pythium damping-off, respectively, as did the 
bacterium. P. fluorescens Q2-87 was isolated from wheat roots 
grown in a suppressive soil from a field near Quincy, Washington. 
Q2-87 produces DAPG and HCN, but only DAPG contributed to 
its biocontrol activity against take-all (39,128). In field studies, 
take-all suppression by Q2-87 was greatest when it was used in 
combination with three other strains also isolated from the Quincy 
suppressive soil (92). P. fluorescens F113 was isolated from sugar 
beet in Ireland and suppressed damping-off of sugar beet caused 
by Pythium ultimum and cyst nematode and soft rot of potato (18, 
19,29,111). These studies, and many others, resulted in the follow-
ing novel findings and concepts. 

 The research with Pf-5 by Howell and Stipanovic (46,47) 
sparked interest in the role of antibiotic production in 
Pseudomonas biocontrol activity. 

 Studies of the suppression of take-all by P. fluorescens 2-79 
provided the first unequivocal evidence that production of 
an antibiotic in situ contributed to biocontrol activity (119). 
This work outlined a genetic strategy known as “Molecular 
Koch’s Postulates” that is still commonly used to determine 
the role of a specific metabolite in the biocontrol process: (i) 
mutagenesis of a biocontrol agent (e.g., transposon muta-
genesis), (ii) screening for loss of the trait, (iii) genetic com-
plementation of mutants to restore the target trait, and (iv) 
comparison of the biocontrol abilities of the parental strain, 
mutant, and complemented mutant (138). 

 Studies with the phenazine producers 2-79 and 30-84 
demonstrated that antibiotics can be readily isolated from 
the rhizosphere environment (120), providing further evi-
dence of the importance of antibiosis in biological control. 
It is now common to isolate and quantify antibiotic 
production in the rhizosphere and spermosphere (118). 

 Phenazines, DAPG, Prn, and Plt are four of the most com-
mon antibiotics produced by Pseudomonas biocontrol agents. 
Pseudomonas spp. that produce these antibiotics became a 
major focus of biocontrol research, and many genes in-
volved in the regulation and synthesis of these compounds 
are now known (1,4,9,17,23,29,32,38,40,51,60,62,76,78, 
85,87,91,94,95,101,106). Strains CHA0, Pf-5, 30-84, and 
F113 have been especially valuable in the identification and 
characterization of regulatory genes of metabolite produc-
tion: (i) gacS/gacA—a two-component sensor-regulator pair 
controlling extracellular metabolites and exoenzymes (62, 
140); (ii) rsmZ, rsmY, and rsmX—small untranslated regu-
latory RNAs (51) that modulate activity of translational 
repressors RsmA and RsmE (99,122,123); (iii) rpoS and 
rpoN—alternative sigma factors (101); (iv) phzI and phzR—
pathway-specific regulators of phenazine biosynthesis and 
quorum sensing (95); (v) phlF—repressor of DAPG syn-
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thesis (9); and (vi) pltR—repressor of pyoluteorin produc-
tion (85). 

 The complete genome of the biocontrol agent P. fluorescens 
Pf-5 has been determined (90). 

ISR pseudomonads. A fourth lineage of contemporary Pseudo-
monas biocontrol research can be traced to independent demon-
strations in 1991 by research groups in The Netherlands, the 
United States, and Sweden that some pseudomonads colonizing 
the roots protected plants from various pathogens by inducing 
systemic resistance. For example, van Peer et al. (126) reported 
that Pseudomonas strain WCS417 induced resistance in carnation 
against Fusarium wilt caused by Fusarium oxysporum f. sp. 
dianthi when the roots were inoculated with bacteria 1 week prior 
to stem inoculation with the pathogen. This strain was isolated 
from the wheat rhizosphere and also promoted the growth of 
several crops. Subsequently, strains WCS417 and WCS374 were 
shown to induce resistance in radish against F. oxysporum f. sp. 
raphani and other pathogens (42). The O-antigenic side chain of 
the lipopolysaccharide, present on the outer membrane of strains 
WCS374 and WCS417, appeared to be the determinant responsi-
ble for the induction of resistance in radish (63). Strain WCS374 
applied as a seed treatment to radish seeds provided an average 
reduction in Fusarium wilt of 42% and an average yield increase 
of 45%. Radish seeds coated with this strain, trade name BioCoat, 
were sold for a short time (63). Wei et al. (131) demonstrated that 
P. putida 89B-27 and other nonpseudomonads induced resistance 
in cucumber leaves to anthracnose, caused by Colletotrichum 
orbiculare. Strain 89B-27 also induced resistance in cucumber 
against angular leaf spot, caused by P. syringae pv. lachrymans 
(65), and Fusarium wilt, caused by F. oxysporum f. sp. cucumeri-
num. This strain also induced resistance against cucumber patho-
gens in the field (132). Alström (2) reported ISR in bean against 
halo blight caused by P. syringae pv. phaseolicola by seed bac-
terization with P. fluorescens strain S97. Here, there was a corre-
lation between reduction in symptom expression and lower 
population density of P. syringae pv. phaseolicola in the leaves 
(3). These studies are highly significant because they identified an 
entirely new mechanism of biological control by pseudomonads 
and other PGPR; ISR is now intensively studied worldwide. 

ROOT COLONIZATION AND NOVEL CONCEPTS 

The dynamics of colonization. The high microbial diversity, 
density, metabolic activity, and competition occurring in the rhizo-
sphere environment represents a formidable “biological buffer-
ing” (137) that generally limits the establishment of introduced, 
foreign microorganisms into the rhizosphere. Thus, one must 
marvel at the ability of introduced pseudomonads and other 
PGPR to colonize roots and provide protection against major and 
minor soilborne pathogens. Several definitions of root coloniza-
tion by rhizobacteria were proposed (54,55,88,109) and most 
included components of movement of the rhizobacteria from an 
inoculum source to the roots, multiplication, and persistence, all 
in the presence of native soil microflora. Weller and Thomashow 
(139) defined root colonization as the process whereby rhizo-
bacteria introduced on seeds, vegetatively propagated plant parts, 
or into the soil become distributed along roots growing in raw 
soil, multiply, and then survive for several weeks in the presence 
of indigenous soil microflora. Root colonization included 
colonization of the rhizosphere, rhizoplane, and/or inside the root. 
Rhizosphere competence describes the relative root-colonizing 
ability of a rhizobacterium (135). 

During the last 30 years, experimental systems using pseudo-
monads have made significant contributions to our understanding 
of the process of root colonization, the biotic and abiotic factors 
affecting colonization, and the bacterial genes and traits that 
contribute to rhizosphere competence. Root colonization has 
remained a focus of much research because of the positive rela-

tionship between colonization and pathogen suppression in many 
biocontrol systems. Arguably, the work of Bahme and Schroth (5) 
was the “gold standard” of root colonization studies. In a pair of 
elegant experiments conducted at Tulelake, CA (Osborn silty 
clay-loam) and at Bakersfield, CA (Hesperia sandy loam), they 
determined the spatial-temporal colonization pattern of seed 
piece-applied P. fluorescens strain A1-B at all stages of potato 
development and on all below-ground plant parts. The compre-
hensiveness and attention to details of this study were especially 
notable. For example, early in the growing season the authors 
could remove an entire root system with a spade but in order to 
insure that an entire root was removed later in the season, they 
dug trenches alongside the plants. Other notable colonization 
studies included the use of (i) Pseudomonas strains A1 and SH5 
to describe the distribution of introduced pseudomonads on and 
among root systems (70); (ii) P. fluorescens PRA25 to describe 
the movement of rhizobacteria through soil and the effect of 
temperature on colonization (11,64); (iii) P. fluorescens 2-79 to 
describe the relationship between inoculum dose, colonization, 
and biocontrol activity, and the effect of matric potential on 
colonization (12,48,133); and (iv) P. fluorescens WCS365 to 
identify rhizosphere competence traits and genes (71). These 
studies, and many others, resulted in the following novel findings 
and concepts. 

 Passive carriage on the root apex (48,110) and with per-
colating water (64,72,84,89,117,121) function in concert to 
move rhizobacteria from inoculum sources on seeds and 
planting material throughout the root system and into the 
bulk soil (long-distance transport). Active bacterial move-
ment (10,24,102) plays a role in colonization on a much 
smaller scale. 

 Rhizobacteria, when applied to seeds or planting material, 
can become widely distributed throughout a root system 
(5,133,134). 

 Population sizes of introduced rhizobacteria are greatest on 
roots and in soil nearest the inoculum source and decline 
with increasing distance from the source of inoculum 
(5,134). 

 Populations of introduced rhizobacteria on roots and other 
underground plant parts are not normally distributed (5,70). 

 Root colonization by rhizobacteria varies among fields, soil 
types, and crops (5). 

 The method of inoculum delivery affects spatial-temporal 
colonization patterns of rhizobacteria on roots and under-
ground plant parts (6). 

 Population densities of introduced rhizobacteria in the 
rhizosphere usually are greatest soon after planting and 
gradually decline throughout the growing season, often 
dropping below the detection limit (8,48,59,70,73,79,97). 

Bacterial traits and genes contributing to rhizosphere com-
petence. During the last 25 years, studies of rhizosphere com-
petence traits and genes have focused extensively on pseudo-
monads and have resulted in three major conclusions. First, 
rhizosphere competence is governed by many genes and traits, 
and in a single strain, multiple traits may be involved in the 
process. This should not be surprising because root colonization 
is a multistage process. Secondly, the contribution of a given trait 
or gene to rhizosphere competence may be strain-specific. Finally, 
the relative importance of a trait or gene is affected by the plant 
species, soil type, environmental conditions, and the type of assay 
used to study the trait. The following are traits or genes that have 
been shown to contribute to rhizosphere competence in at least 
one rhizobacterium. 

 Ability to compete for or produce limiting resources includ-
ing the following: vitamins (biotin, thiamine) (114), amino 
acids (16,71,112,127), organic acids (71), sugar phosphates 
(67), and iron (43,45,69,82,83,98). 

 Rapid growth rate (22,31,61,113). 
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 Cell surface structures and traits: lipopolysaccharide (22, 
27,113), flagella/motility (16,22,26,71,113), chemotaxis (24), 
and NADH dehydrogenase (14,22). 

 Ability to survive exposure to physical and chemical stresses: 
heat, desiccation, presence of reactive oxygen species, high 
osmolarity, low matric potential, and bacteriostatic levels of 
putrescine (36,49,50,61,68,74,101,107). 

 Global regulators facilitating responses to environmental 
change: GacS and GacA (40,75,84,105), sigma factor 
(75,107,140), and quorum sensing (interpopulation and 
intrapopulation signaling) (15,66,93,142,143,146). 

 Ability to create a phenotypically diverse population: phase 
variation/site-specific recombinase (16,20,21,44,100). 

 Production of phenazine antibiotics (80). 

FUTURE PROSPECTS AND DIRECTIONS  

Tremendous progress has been made over the past 30 years in 
understanding the process of root colonization by pseudomonads 
and in characterizing the biotic and abiotic factors affecting 
colonization, the genes contributing to rhizosphere competence, 
and the diverse mechanisms by which pseudomonads suppress 
soilborne pathogens. This wealth of knowledge has provided a 
firm foundation for Pseudomonas research in the 21st century that 
must now be applied to advance broader incorporation of these 
bacteria into sustainable strategies for the management of soil-
borne pathogens. In the short term, the technology already exists 
to directly identify biocontrol agents active against target patho-
gens, to select strains with an affinity for particular crops or culti-
vars, to engineer strains for greater efficacy and reliability, and to 
develop and exploit soils naturally suppressive to particular patho-
gens. New insights are certain to be gained from the recently 
published genomic sequence of P. fluorescens Pf-5, which already 
has revealed biosynthetic potential for many previously undetected 
compounds likely to contribute to the broad antifungal activity of 
this strain (90). Perhaps the greatest remaining challenge facing 
Pseudomonas biocontrol research is the development of new 
formulations. Even here, progress has resulted from recognition 
of the impact of the production process on the quality of bio-
control products, and high-throughput methods have been devel-
oped to identify factors that affect efficacy and shelf life. In total, 
tremendous progress has made over the last 30 years, which 
bodes well for the future of biocontrol with Pseudomonas spp. 
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